Abstract

A method for the estimation of population dynamic history from sequence data is described and used to investigate the past population dynamics of HIV-1 subtypes A and B. Using both gag and env gene alignments the effective population size of each subtype is estimated and found to be surprisingly small. This may be a result of the selective sweep of mutations through the population, or may indicate an important role of genetic drift in the fixation of mutations. The implications of these results for the spread of drug-resistant mutations and transmission dynamics, and also the roles of selection and recombination in shaping HIV-1 genetic diversity, are discussed. A larger estimated effective population size for subtype A may be the result of differences in time of origin, transmission dynamics, and/or population structure. To investigate the importance of population structure a model of population subdivision was fitted to each subtype, although the improvement in likelihood was found to be nonsignificant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.