Abstract

This paper investigates the application of genetic programming (GP) for dynamic symbolic regression (SR), addressing the challenge of adapting machine learning models to evolving data in practical applications. Benchmark instances with changing underlying functions over time are defined to assess the performance of a genetic algorithm (GA) as a traditional evolutionary algorithm and an age-layered population structure (ALPS) as an open-ended evolutionary algorithm for dynamic symbolic regression. This study analyzes population dynamics by examining variable frequencies and impact changes over time in response to dynamic shifts in the training data. The results demonstrate the effectiveness of both the GA and ALPS in handling changing data, showcasing their ability to recover and evolve improved solutions after an initial drop in population quality following data changes. Population dynamics reveal that variable impacts respond rapidly to data changes, while variable frequencies shift gradually across generations, aligning with the indirect measure of fitness represented by variable impacts. Notably, the GA shows a strong dependence on mutation to avoid variables becoming permanently extinct, contrasting with the ALPS’s unexpected insensitivity to mutation rates owing to its reseeding mechanism for effective variable reintroduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.