Abstract

Predictions about sex-specific, spatial density-dependent dispersal and their demographic and genetic consequences were tested in experimental populations of root voles (Microtus oeconomus). Each population consisted of two demes inhabiting equal-sized habitat patches imbedded in a barren matrix area. We used a neutral two-allele allozyme marker to monitor gene flow. Initially, the two demes were genetically distinct and had different densities so that the size of a high-density deme (genotype bb) was four times larger than that of a low-density deme (genotype aa). The sex-specific dispersal pattern was in accordance with our prediction. Male dispersal was unconditional on deme-specific densities, and the majority of the first-generation males became dispersed from both demes, whereas female dispersal was strongly density dependent, so that dispersal took place exclusively from the high-density to the low-density deme. The demographic implication of this dispersal pattern was that the initial density difference between the demes was quickly canceled out. We built a mathematical model that predicted that the initially rare allele (a) would increase in frequency given the dispersal pattern, and this was supported by our experimental data. This result relies mostly on the density-independent male-dispersal strategy, which presumably stems from inbreeding avoidance. Our study highlights the importance of incorporating sex-specific dispersal strategies in population genetic models. Sex-biased dispersal may act as a deterministic force counteracting the tendency for stochastic loss of alleles in small and fragmented populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call