Abstract

IntroductionThe role of wildlife in the transmission of antimicrobial resistant (AMR) is suspected but scarcely reported in current studies. Therefore, we studied the dynamics and prevalence of antibiotic-resistant Enterobacterales in antibiotic-limited areas of Senegal.Materials and MethodsWe collected fecal samples from monkeys and apes (N = 226) and non-fecal environmental samples (N = 113) from Senegal in 2015 and 2019. We grew the samples on selective media, subsequently isolated AMR Enterobacterales, and then sequenced their genomes.ResultsWe isolated 72 different Enterobacterales among which we obtained a resistance rate of 65% for colistin (N = 47/72) and 29% for third generation-cephalosporin (C3G) (29%, N = 21/72). Interestingly, almost 46% of our isolates, among Enterobacter sp., Citrobacter cronae and Klebsiella aerogenes, belong to 34 new STs. Moreover, the genes blaCTX–M–15, blaTEM1B, sul2, dfrA14, qnrs, aph(3′′), aph(6), tetA, and tetR harbored within a transposon on the IncY plasmid of ST224 Escherichia coli were transferred and inserted into a ST10 E. coli phage coding region.ConclusionWildlife constitutes a rich, unexplored reservoir of natural microbial diversity, AMR genes and international resistant clones pathogenic in humans. The presence of a transposon that carries AMR genes is intriguing since no antibiotics are used in the non-human primates we studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.