Abstract

This study evaluated models of species relationships among sinistral whelks in the genus Busycon in the Atlantic and Gulf of Mexico. Gene frequencies at eight polymorphic allozyme loci, shell morphology, anatomy, and partial DNA sequences for the cytochrome c oxidase I (COI) mitochondrial gene were examined in eight populations, ranging from New Jersey to the Yucatan peninsula, and from the dextrally coiled sister taxon Busycon carica (Gmelin, 1791). Whelks were collected in 1997 and 1998. The maximum COI sequence divergence recorded among 32 sinistral individuals was 1.96%, which together with the absence of any gross or qualitative morphological differences, suggested all eight populations should be considered conspecific. High levels of divergence between the allopatric western Atlantic and Gulf of Mexico populations, as revealed by fixed or nearly fixed differences at several allozyme-encoding loci were interpreted as evidence that the east Florida ecotone constitutes a significant barrier to gene flow. Size trimming also revealed several significant quantitative differences in shell and radular morphology between the three pooled Atlantic populations and five pooled Gulf populations. The Yucatan sample was the most distinctive conchologically, with heavy spines and tumid ridges, possibly related to stone crab predation. Based on the evidence all left-handed whelks of North America should be referred to the oldest available nomen, Busycon perversum (Linne, 1758), with three subspecies, B. perversum perversum along the Yucatan peninsula, B. perversum sinistrum (Hollister, 1958) in the northern and eastern Gulf of Mexico, and B. perversum laeostomum (Kent, 1982) in the Atlantic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call