Abstract

The heterogametic sex tends to be rare, absent, sterile, or deformed in F1 hybrid crosses between species, a pattern called Haldane's rule (HR). The introgression of single genes or chromosomal regions from one drosophilid species into the genetic background of another have shown that HR is most often associated with fixed genetic differences in inter-specific crosses. However, because such introgression studies have involved species diverged several hundred thousand generations from a common ancestor, it is not clear whether HR attends the speciation process or results from the accumulation of epistatically acting genes postspeciation. We report the first evidence for HR prior to speciation in crosses between two populations of the red flour beetle, Tribolium castaneum, collected 931 km apart in Colombia and Ecuador. In this cross, HR is manifested as an increase in the proportion of deformed males compared to females and the expression of HR is temperature dependent. Neither population, when crossed to a geographically distant population from Japan, exhibits HR at any rearing temperature. Using joint-scaling analysis and additional data from backcrosses and F2's, we find that the hybrid incompatibilities and the emergence of HR are concurrent processes involving interactions between X-linked and autosomal genes. However, we also find many examples of incompatibilities manifest by F2 and backcross hybrids but not by F1 hybrids and most incompatibilities are not sex different in their effects, even when they involve both X-autosomal interactions and genotype-by-environment interactions. We infer that incipient speciation in flour beetles can occur with or without HR and that significant hybrid incompatibilities result from the accumulation of epistatically acting gene differences between populations without differentially affecting the heterogametic sex in F1 hybrids. The temperature dependence of the incompatibilities supports the inference that genotype-by-environment interactions and adaptation to different environments contribute to the genetic divergence important to postzygotic reproductive isolation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.