Abstract

Policy-making in public health has great socio-economical consequences and must be done using the best available knowledge on the possible options. These processes are often too complex to be evaluated through analytical methods, such that computer simulations are often the best way to produce quantitative evaluations of their performances. For that purpose, we are proposing a complete software infrastructure for the simulation of public health processes. This software stack includes a generic population-based simulator called SynCHroNous Agent- and Population-based Simulator, which has a modern object-oriented software architecture, and is completely configured through eXtensible Markup Language files. These configuration files can themselves be produced by a graphical user interface that allows modeling of public health simulation by nonprogrammers. This software infrastructure has been illustrated with the real-life case study of osteoporosis prevention in adult women populations. This example, which is of great interest for Quebec health decision makers, provides insightful results for comparing several prevention strategies on a realistic population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call