Abstract

BackgroundSkeletal muscle mass is subjected to constant changes and is considered a good predictor for outcome in various diseases. Bioelectrical‐impedance analysis (BIA) and magnetic resonance imaging (MRI) are approved methodologies for its assessment. However, muscle mass estimations by BIA may be influenced by excess intramuscular lipids and adipose tissue in obesity. The objective of this study was to evaluate the feasibility of quantitative assessment of skeletal muscle mass by MRI as compared with BIA.MethodsSubjects from a population‐based cohort underwent BIA (50 kHz, 0.8 mA) and whole‐body MRI including chemical‐shift encoded MRI (six echo times). Abdominal muscle mass by MRI was quantified as total and fat‐free cross‐sectional area by a standardized manual segmentation‐algorithm and normalized to subjects' body height2 (abdominal muscle mass indices: AMMIMRI).ResultsAmong 335 included subjects (56.3 ± 9.1 years, 56.1% male), 95 (28.4%) were obese (BMI ≥ 30 kg/m2). MRI‐based and BIA‐based measures of muscle mass were strongly correlated, particularly in non‐obese subjects [r < 0.74 in non‐obese (P < 0.001) vs. r < 0.56 in obese (P < 0.001)]. Median AMMITotal(MRI) was significantly higher in obese as compared with non‐obese subjects (3246.7 ± 606.1 mm2/m2 vs. 2839.0 ± 535.8 mm2/m2, P < 0.001, respectively), whereas the ratio AMMIFat‐free/AMMITotal (by MRI) was significantly higher in non‐obese individuals (59.3 ± 10.1% vs. 53.5 ± 10.6%, P < 0.001, respectively). No significant difference was found regarding AMMIFat‐free(MRI) (P = 0.424). In analyses adjusted for age and sex, impaired glucose tolerance and measures of obesity were significantly and positively associated with AMMITotal(MRI) and significantly and inversely with the ratio AMMIFat‐free(MRI)/AMMITotal(MRI) (P < 0.001).ConclusionsMRI‐based assessment of muscle mass is feasible in population‐based imaging and strongly correlated with BIA. However, the observed weaker correlation in obese subjects may explain the known limitation of BIA in obesity and promote MRI‐based assessments. Thus, skeletal muscle mass parameters by MRI may serve as practical imaging biomarkers independent of subjects' body weight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.