Abstract

This work is motivated by the problem of identifying homozygosity islands on the genome of individuals in a population. Our method directly tackles the issue of identification of the homozygosity islands at the population level, without the need of analysing single individuals and then combine the results, as is made nowadays in state-of-the-art approaches. We propose regularized offline change-point methods to detect changes in the parameters of a multidimensional distribution when we have several aligned, independent samples of fixed resolution. We present a penalized maximum likelihood approach that can be efficiently computed by a dynamic programming algorithm or approximated by a fast binary segmentation algorithm. Both estimators are shown to converge almost surely to the set of change-points without the need of specifying a priori the number of change-points. In simulation, we observed similar performances from the exact and greedy estimators. Moreover, we provide a new methodology for the selection of the regularization constant which has the advantage of being automatic, consistent, and less prone to subjective analysis. The data used in the application are from the Human Genome Diversity Project (HGDP) and is publicly available. Algorithms were implemented using the R software R Core Team (R: A Language and Environment for Statistical Computing. Vienna (Austria): R Foundation for Statistical Computing, 2020.) in the R package blockcpd, found at https://github.com/Lucas-Prates/blockcpd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.