Abstract

Statistical methods are increasingly used in biomechanics for studying bone geometry, bone density distribution and function in the population. However, relating population-based bone variation to strain during activity is computationally challenging. Here, we describe a new method for calculating strain in a population, using the Superposition Principle Method Squared (SPM2), and we demonstrate the method for calculating strain in human femurs. Computed-tomography images and motion capture while walking in 21 healthy adult women were obtained earlier. Variation of femur geometry and bone distribution were modelled using active shape and appearance modelling (ASAM). Femoral strain was modelled as the weighted sum of strain generated by each force in the model plus a strain variation assumed a quadratic function of the ASAM scores. The quadratic coefficients were fitted to 35 instances drawn from the ASAM model by varying each eigenmode by ± 2 SD. The equivalent strain in matched finite-element and SPM2 calculations was obtained for 40 frames of walking for three independent cases and 50 ASAM instances. Finite-element and SPM2 solutions for walking were obtained in 44 and 3 min respectively. The SPM2 model accurately predicted strain for the three independent instances (R-squared 0.83-0.94) and the 50 ASAM instances (R-squared 0.95-1.00). The method developed enables fast and accurate calculation of population-based femoral strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call