Abstract

Despite great progress in the synthetic chemistry of InP QDs, a predictive model to describe their temporal formation is still missing. In this work, we introduce a population balance model incorporating liquid phase reactions, homogeneous nucleation and reaction-limited growth of InP supported with the highly reproducible and reliable experimental data acquired from an automated robotic synthesis platform. A comparison between experimental kinetic data (different initial concentrations and temperatures) and simulations was made. The proposed model describes the temporal evolution of solid concentration, particle diameter and particle size distribution very well. The quantitative agreement between experiments and simulations was only achieved by global optimization to identify unknown and hardly measurable material parameters and kinetic constants such as surface energy, growth rate constants or activation energies. We see this model rendering the first step towards the development of more refined models that enable rigorous optimization and control of the production process for III-V semiconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.