Abstract
With the effects of global warming becoming ever more obvious, biodiversity conservation is facing severe challenges. Currently, a deeper understanding the mechanisms of the effects of warming on sensitive species has become an important topic in aquatic biodiversity and ecological management. Our study first overcame the “challenge” for a sensitive indicator species (Netzelia tuberspinifera, an endemic testate amoeba species in East Asia) of culturing under laboratory conditions, and then explored its molecular response mechanisms to warming using transcriptomic analysis. Our data indicate that temperature mainly drove the geographical and seasonal variation of N. tuberspinifera populations. Transcriptomic results indicate that when the temperature is <25 °C, rising temperature triggers the biosynthesis of ribosomes; while the temperature is >25 °C, it triggers molecular processes related with cell division, test formation and general biomass increase. However, once the temperature exceeds 40 °C, N. tuberspinifera is unable to survive. Following from these results, the distribution of N. tuberspinifera might expand towards higher altitude or latitude regions under global warming. For the first time, our study showed direct evidence for sensitive protozoa species that presents a very narrow adaptation mechanism to local climate. Our work provides fundamental data for regional biodiversity conservation and scientific reference in subtropical and tropical waterbodies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.