Abstract
Cost-effective genotyping can be achieved by sequencing PCR amplicons. Short 3–10 base primers can arbitrarily amplify thousands of loci using only a few primers. To improve the sequencing efficiency of the multiple arbitrary amplicon sequencing (MAAS) approach, we designed new primers and examined their efficiency in sequencing and genotyping. To demonstrate the effectiveness of our method, we applied it to examining the population structure of the small freshwater fish, medaka (Oryzias latipes). We obtained 2987 informative SNVs with no missing genotype calls for 67 individuals from 15 wild populations and three artificial strains. The estimated phylogenic and population genetic structures of the wild populations were consistent with previous studies, corroborating the accuracy of our genotyping method. We also attempted to reconstruct the genetic backgrounds of a commercial orange mutant strain, Himedaka, which has caused a genetic disturbance in wild populations. Our admixture analysis focusing on Himedaka showed that at least two wild populations had genetically been contributed to the nuclear genome of this mutant strain. Our genotyping methods and results will be useful in quantitative assessments of genetic disturbance by this commercially available strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.