Abstract

Thermal denaturation profiles of several model oligonucleotides of the human telomere DNA sequence including d[A(GGGTTA)(3)GGG] (Tel22) were determined using circular dichroism (CD), fluorescence of adenine → 2-aminopurine analogs, and fluorescence resonance energy transfer (FRET) to monitor the unfolding process at specific locations within the quadruplex. The resulting optical spectra vs temperature data matrices were analyzed by singular value decomposition (SVD) to ascertain the minimum number of species required to reproduce the unfolding spectral profiles. Global nonlinear least-squares fitting of the SVD amplitude vectors was used to estimate thermodynamic parameters and optical spectra of all species for a series of unfolding mechanisms that included one-, two-, and three-step sequential pathways F ⇌ I(n) ⇌ U, n = 0, 1, or 2) as well as two mechanisms with spectroscopically distinct starting structures (F(1) and F(2)). The CD and FRET data for Tel22 unfolding between 4 and 94 °C in 25 mM KCl were best described by a sequential unfolding model with two intermediates, while the 2-aminopurine analogs required one intermediate. The higher melting intermediate I(2) had a transition midpoint temperature (T(m)) of 61 °C and a CD spectrum with a maximum and minimum at ~265 and ~245 nm, respectively. The fluorescence emission spectra of the 2-aminopurine and FRET derivatives suggest greater solvent exposure of the 5'-AGGGTTA- segment in the intermediate compared to the folded state. The spectroscopic properties of the 61 °C intermediate suggest that it may be a triple helical structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.