Abstract

Collaborative filtering (CF) has been the most popular approach for recommender systems in recent years. In order to analyze the property of a ranking-oriented CF algorithm directly and be able to improve its performance, this paper investigates the ranking-oriented CF from the perspective of loss function. To gain the insight into the popular bias problem, we also study the tendency of a CF algorithm in recommending the most popular items, and show that such popularity tendency can be adjusted through setting different parameters in our models. After analyzing two state-of-the-art algorithms, we propose in this paper two models using the generalized logistic loss function and the hinge loss function, respectively. The experimental results show that the proposed methods outperform the state-of-the-art algorithms on two real data sets.KeywordsCollaborative filteringmatrix factorizationloss function

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.