Abstract

By enabling name-based routing and ubiquitous in-network caching, Named Data Networking (NDN) is a promising network architecture for sixth generation (6G) edge network infrastructures. However, the performance of content retrieval largely depends on the selected caching strategy, which is implemented in a distributed fashion by each NDN node. Previous research showed the effectiveness of caching decisions based on content popularity and network topology information. This paper presents a new distributed caching strategy for NDN edge networks based on a metric called popularity-aware closeness (PaC), which measures the proximity of the potential cacher to the majority of requesters of a certain content. After identifying the most popular contents, the strategy caches them in the available edge nodes that guarantee the higher PaC. Achieved simulation results show that the proposed strategy outperforms other benchmark schemes, in terms of reduced content retrieval delay and exchanged data traffic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.