Abstract

We consider popular matching problems in both bipartite and non-bipartite graphs with strict preference lists. It is known that every stable matching is a min-size popular matching. A subclass of max-size popular matchings called dominant matchings has been well-studied in bipartite graphs: they always exist and there is a simple linear time algorithm to find one. We show that stable and dominant matchings are the only two tractable subclasses of popular matchings in bipartite graphs; more precisely, we show that it is NP-complete to decide if $G$ admits a popular matching that is neither stable nor dominant. We also show a number of related hardness results, such as (tight) inapproximability of the maximum weight popular matching problem. In non-bipartite graphs, we show a strong negative result: it is NP-hard to decide whether a popular matching exists or not, and the same result holds if we replace popular with dominant. On the positive side, we show the following results in any graph: - we identify a subclass of dominant matchings called strongly dominant matchings and show a linear time algorithm to decide if a strongly dominant matching exists or not; - we show an efficient algorithm to compute a popular matching of minimum cost in a graph with edge costs and bounded treewidth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.