Abstract

For perennials in boreal and temperate ecosystems, bud dormancy is crucial for survival in harsh winter. Dormancy is released by prolonged exposure to low temperatures and is followed by reactive growth in the spring. Lysine acetylation (Kac) is one of the major post-translational modifications (PTMs) that are involved in plant response to environmental signals. However, little information is available on the effects of Kac modification on bud dormancy release. Here, we report the dynamics of lysine acetylome in hybrid poplar (Populus tremula × Populus alba) dormant buds. A total of 7,594 acetyl-sites from 3,281 acetyl-proteins were identified, representing a large dataset of lysine acetylome in plants. Of them, 229 proteins were differentially acetylated during bud dormancy release and were mainly involved in the primary metabolic pathways. Site-directed mutagenesis enzymatic assays showed that Kac strongly modified the activities of two key enzymes of primary metabolism, pyruvate dehydrogenase (PDH) and isocitrate dehydrogenase (IDH). We thus propose that Kac of enzymes could be an important strategy for reconfiguration of metabolic processes during bud dormancy release. In all, our results reveal the importance of Kac in bud dormancy release and provide a new perspective to understand the molecular mechanisms of seasonal growth of trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.