Abstract
We propose a novel approach to the well-known view update problem for the case of tree-structured data: a domainspecific\ programming language in which all expressions denote bi-directional transformations on trees. In one direction, these transformations--dubbed lenses--map a "concrete" tree into a simplified "abstract view"; in the other, they map a modified abstract view, together with the original concrete tree, to a correspondingly modified concrete tree. Our design emphasizes both robustness and ease of use, guaranteeing strong well-behavedness and totality properties for well-typed lenses We identify a natural space of well-behaved bi-directional transformations over arbitrary structures, study definedness and continuity in this setting, and state a precise connection with the classical theory of "update translation under a constant complement" from databases. We then instantiate this semantic framework in the form of a collection of lens combinators that can be assembled to describe transformations on trees. These combinators include familiar constructs from functional programming (composition, mapping, projection, conditionals, recursion) together with some novel primitives for manipulating trees (splitting, pruning, merging, etc.). We illustrate the expressiveness of these combinators by developing a number of bi-directional list-processing transformations as derived forms
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.