Abstract

MotivationIntratumour heterogeneity poses many challenges to the treatment of cancer. Unfortunately, the transcriptional and metabolic information retrieved by currently available computational and experimental techniques portrays the average behaviour of intermixed and heterogeneous cell subpopulations within a given tumour. Emerging single-cell genomic analyses are nonetheless unable to characterize the interactions among cancer subpopulations. In this study, we propose popFBA, an extension to classic Flux Balance Analysis, to explore how metabolic heterogeneity and cooperation phenomena affect the overall growth of cancer cell populations.ResultsWe show how clones of a metabolic network of human central carbon metabolism, sharing the same stoichiometry and capacity constraints, may follow several different metabolic paths and cooperate to maximize the growth of the total population. We also introduce a method to explore the space of possible interactions, given some constraints on plasma supply of nutrients. We illustrate how alternative nutrients in plasma supply and/or a dishomogeneous distribution of oxygen provision may affect the landscape of heterogeneous phenotypes. We finally provide a technique to identify the most proliferative cells within the heterogeneous population. Availability and implementationthe popFBA MATLAB function and the SBML model are available at https://github.com/BIMIB-DISCo/popFBA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.