Abstract
Dynamic multimodal optimization problems (DMMOPs) are a class of problems consisting of two characteristics, i.e., dynamic and multimodal natures. The former characteristic reveals that the properties of DMMOPs change over time, which is derived from dynamic optimization problems (DOPs). The latter one indicates that there exist multiple global or acceptable local optima, which comes from the multimodal optimization problems (MMOPs). Although there has been much attention to both DOPs and MMOPs in the field of meta-heuristics, there is little work devoting to the connection between the dynamic and multimodal natures in DMMOPs. To solve DMMOPs, the strategies dealing with dynamic and multimodal natures in the algorithms should cooperate with each other. Before looking deeply into the connections between two natures, there is necessary to measure the performances of the methods dealing with two natures in DMMOPs. In this paper, first, considering the dynamic and multimodal natures of DMMOPs, we design a set of benchmark problems to simulate various dynamic and multimodal environments. Then, we propose the optimization framework called PopDMMO containing several popular algorithms and methods to test and compare the performances of these algorithms, which gives a general view of solving DMMOPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.