Abstract

Radical polymerization of poly(ethylene glycol) methyl ether methacrylate (OEO19MA, Mn ∼ 950) at an initial monomer concentration of 150 mM was investigated as a function of solvent composition. Conventional and controlled radical polymerizations in anisole at 60 °C converged at approximately the same equilibrium monomer concentration ([M]eq) of ∼38 mM, suggesting that livingness or diminished termination did not affect the thermodynamic parameters of polymerization. Conventional radical polymerizations (RPs) in anisole, dimethylformamide (DMF), toluene, and 1×PBS buffered water were taken to approximately 98% thermal initiator decomposition to determine [M]eq at reaction completion within a broad temperature range. The enthalpy (ΔHp) and entropy (ΔSp°) of polymerization were solvent-dependent. Polymerizations in 1×PBS were the most thermodynamically favorable, followed by those in DMF, toluene, and anisole. -ΔHp and -ΔSp increased with the square of the difference in the Hansen solubility parameters of poly(ethylene glycol) and the solvent. It is proposed that poor solvents favor polymer-polymer interactions over polymer-solvent interactions, which improves the thermodynamic polymerizability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call