Abstract
Clinical decision support systems (CDSS) are used to identify drugs with potential need for dose modification in patients with renal impairment. ChatGPT holds the potential to be integrated in the electronic health record (EHR) system to give such dosing advices. In this study, we aim to evaluate the performance of ChatGPT in clinical rule-guided dose interventions in hospitalized patients with renal impairment. This cross-sectional study was performed at Tergooi Medical Center, the Netherlands. CDSS alerts regarding renal dysfunction were collected from the electronic health record (EHR) during a 2-week period and were presented to ChatGPT and an expert panel. Alerts were presented with and without patient variables. To evaluate the performance, suggested medication interventions were compared. In total, 172 CDDS alerts were generated for 80 patients. Indecisive responses by ChatGPT to alerts were excluded. For alerts presented without patient variables, ChatGPT provided "correct and identical" responses to 19.9%, "correct and different" responses to 26.7%, and "incorrect responses to 53.4% of the alerts. For alerts including patient variables, ChatGPT provided "correct and identical" responses to 16.7%, "correct and different" responses to 16.0%, and "incorrect responses to 67.3% of the alerts. Accuracy was better for newer drugs such as direct oral anticoagulants. The performance of ChatGPT in clinical rule-guided dose interventions in hospitalized patients with renal dysfunction was poor. Based on these results, we conclude that ChatGPT, in its current state, is not appropriate for automatic integration into our EHR to handle CDSS alerts related to renal dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.