Abstract
It is well accepted that type 2 diabetic mellitus (T2DM) results in the poor outcome of ischemic stroke. However, the mechanisms by which T2DM causes aggravated cerebral ischemic/reperfusion (I/R) injury are not clear. Recently, endothelial progenitor cells (EPCs) are considered to be related with the outcome of ischemic stroke. More importantly, T2DM can affect the function of circulating EPCs. This study tried to investigate whether T2DM worsens the cerebral I/R injury via affecting circulating EPCs. We used high-fat diet-fed and low-dose streptozotocin-treated male rats receiving middle cerebral artery occlusion surgery as animal model of focal cerebral I/R injury with T2DM (diabetic operated). And the rats were divided into 4 groups: normal sham, diabetic sham, normal operated, and diabetic operated. We measured the circulating EPCs counts and the levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in peripheral plasma of 4 groups. We found that diabetic rats subjected to I/R exhibited significantly severe deterioration in neurologic deficits compared with nondiabetic counterparts, which manifested higher infarct volume and cell apoptosis as well as lower neurologic defective score. There was no significant difference on the plasma glucose of groups before cerebral I/R injury compared with that of the groups posterior to cerebral I/R injury despite cerebral I/R injury had the tendency to increase the plasma glucose no matter in the presence or the absence of T2DM. In addition, there were the marked downregulation of circulating EPCs counts and the levels of VEGF and eNOS in diabetic rats before the cerebral I/R injury. Despite I/R injury without T2DM, there was a significant increase in the circulating EPCs counts, the circulating EPCs counts in I/R injury with T2DM group were significantly decreased compared with those in the other 3 groups. We also observed that the level of eNOS was significantly improved by I/R injury without considering the presence of T2DM. Thus, our present study suggested that it might be the impaired EPCs mobilization into theblood that contributed to the worse outcome of cerebral I/R injury with T2DM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.