Abstract

To manipulate target gene function in specific adult cell populations, tamoxifen (TAM)-dependent CreERT2 is widely used to drive inducible, site-specific recombination of loxP flanked sequences. In studies of cell autonomous target gene function, it is common practice to combine these CreERT2-lox systems with a ubiquitously expressed stop-floxed fluorescent reporter gene to identify single cells supposedly undergoing target gene recombination. Here, we studied the reliability of using Cre-induced recombination of one gene to predict recombination in another gene at the single-cell level in adult hippocampal neural stem and progenitor cells (NSPCs). Using both probabilistic predictions in a generic experimental paradigm, as well as a mouse model with two separate stop-floxed reporters plus a Nestin promoter-driven CreERT2, we found that, in individual cells, recombination of one gene was a poor predictor of recombination in another. This poor concordance in floxed sequence recombination across genes suggests that use of stop-floxed reporters to investigate cell autonomous gene function may not be universally reliable and could lead to false conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.