Abstract
Consider two independent and identically structured systems, each with a certain number of observed repair times. The repair process is assumed to be performed according to a minimal-repair strategy. In this strategy, the state of the system after the repair is the same as it was immediately before the failure of the system. The resulting pooled sample is then used to obtain best linear unbiased estimators (BLUEs) as well as best linear invariant estimators of the location and scale parameters of the presumed parametric families of life distributions. It is observed that the BLUEs based on the pooled sample are overall more efficient than those based on one sample of the same size and also than those based on independent samples. Furthermore, the best linear unbiased predictor and the best linear invariant predictor of a future repair time from an independent system are also obtained. A real data set of Boeing air conditioners, consisting of successive failures of the air conditioning system of each member of a fleet of Boeing jet airplanes, is used to illustrate the inferential results developed here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.