Abstract

In this communication, the prevalence of Poole-Frenkel conduction mechanism in two distinct semiconductor systems, CdS single-layered and CdS/SnS2 heterojunction electrode systems, is reported. X-ray diffraction (XRD) exhibits the formation of CdS quantum dots (QDs). A High resolution transmission electron microscopy (HRTEM) shows a discrete particle distribution of SnS2, tends to assemble into nanosheets. Poole-Frenkel conduction arises due to the trap distribution of CdS dots, modified by SnS2 sheets. Furthermore, the formation of heterojunctions with SnS2 shows promising enhancement in charge transport, characterized by reduced trap density and improved conductivity compared pristine CdS. The findings provide valuable insights into the fundamental charge transport processes in CdS/SnS2 system and offer potential avenues for optimizing the performance of electronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.