Abstract

Hazardous substances with a boiling point close to ambient temperatures will evaporate at higher vapour pressures, so that the evaporation takes places in the smooth transition between the evaporation at boiling point and below boiling point, representing the transition between two different physical phenomena. Whilst the evaporation at boiling point is driven by the available heat flux, the evaporation below boiling point is driven by the concentration gradient between the pool surface and the ambient air. Available evaporation models usually focused on the correct description of the mass transfer coefficient for temperatures below boiling point. A formulation of the correct equation for the mass flow is rarely documented. Whilst the mass transfer coefficient formulation is more or less equivalent in most models, the main difference occurs in the formulation of the mass flow equation. In Fact two types of models can be identified: the models with a linear pressure term and the models with a logarithmic pressure term. Whilst the logarithmic formulations result in an infinite mass flow near boiling point, which is not plausible, the linear formulations reach (different) finite values. Due to a lack of published experimental data it was not possible to determine whether the linear approach is conservative, under predicting or more or less accurate close to the boiling point. To evaluate the accuracy of each type of formulation, test series on liquid pools have been carried out at BAM for substances like Water, Ethanol, Cyclohexane, and Acetone. The tests were done under ambient conditions with a heatable, 90 cm diameter pool, so that the vapour pressures investigated ranged from 0 to close to 1 bar. The experimental data showed that neither of the linear nor the logarithmic formulation of the evaporation models is able to predict correctly the mass flow close to the boiling point. The logarithmic approach heavily over predicts the mass flow, while the linear approach is not conservative anymore when the vapour pressure exceeds 0.7 bar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.