Abstract

In this paper, pool boiling on micro-pillar structured surfaces is studied by using a three-dimensional pseudo potential phase-change lattice Boltzmann method (LBM). The joint enhancing effects on bubble nucleation and boiling performance are discussed in detail regarding various surface wettability and pillar geometrical parameters. Results show that on neutral and hydrophobic surfaces, enlarging the spacing of micro pillars delays the nucleation but can reduce the temperature inside vapor film and improve heat conduction. Despite that increasing the pillar height can improve heat flux, it is adverse to nucleation due to the increased cooling effect on the roots of micro pillars. In contrast, on hydrophilic surfaces, the impact of pillar spacing on nucleation is not monotonous and relatively much complicated. The heat flux is enhanced with increasing pillar spacing because of the extended three-phase contact line. And, the nucleation positions differ significantly by varying pillar geometrical parameters on hydrophilic surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.