Abstract

Pool boiling on confined and unconfined tube columns was investigated. A model to predict bulk void fraction in a confined tube column was developed and validated experimentally, returning a mean predictive accuracy error of 12.5%. A semi-empirical model was also developed from bubble plume images to evaluate bulk void fraction in an unconfined plume around a tube column. Within an unconfined plume, void fraction increases monotonically with column height, indicating that a column height exists beyond which the mean column heat transfer coefficient is adversely affected by dryness. Pool boiling experiments were undertaken in Novec 649 to investigate the effects of external confinement, tube spacing, and column height on heat transfer. Increasing the column height in a column showed an initial decline in power density to a constant at ∼30 MW m−3. A tube void fraction threshold was identified as changing the location of critical heat flux from the bottom tube to the top tube in a column, and to cause a deterioration in tube heat transfer coefficient at high heat fluxes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.