Abstract
<p style='text-indent:20px;'>A Pontryagin maximum principle for an optimal control problem in three dimensional linearized compressible viscous flows subject to state constraints is established using the Ekeland variational principle. Since the system considered here is of coupled parabolic-hyperbolic type, the well developed control theory literature using abstract semigroup approach to linear and semilinear partial differential equations does not seem to contain problems of the type studied in this paper. The controls are distributed over a bounded domain, while the state variables are subject to a set of constraints and governed by the compressible Navier-Stokes equations linearized around a suitably regular base state. The maximum principle is of integral-type and obtained for minimizers of a tracking-type integral cost functional.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.