Abstract
We present a new geometric unfolding of a prototype problem of optimal control theory, the Mayer problem. This approach is crucially based on the Stokes Theorem and yields to a necessary and sufficient condition that characterizes the optimal solutions, from which the classical Pontryagin Maximum Principle is derived in a new insightful way. It also suggests generalizations in diverse directions of such famous principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.