Abstract

In order to explore novel colorimetric biosensors with high sensibility and selectivity, two new Keggin polyoxometalates (POMs)-based Cu-trz (1,2,4-triazole) metal-organic frameworks (MOFs) with suitable specific surface areas and multiple active sites were favorably fabricated; then single-walled carbon nanotubes (SWNTs) were merged with new POMOFs to construct POMOF/SWNT nanocomposites. Herein, POMOF/SWNT nanocomposites as peroxidase mimics were explored for the first time, and the peroxidase-mimicking activity of the prepared POMOF/SWNT nanocomposites is heavily dependent on the mass ratio of POMOFs and SWNTs, in which the maximum activity is achieved at the mass ratio of 2.5:1 (named PMNT-2). More importantly, PMNT-2 exhibits the lowest limit of detection (0.103 μM) among all reported materials to date and the assumable selectivity toward l-cysteine (l-Cys) detection. With these findings, a convenient, sensitive, and effective "on-off switch" colorimetric platform for l-Cys detection has been successfully developed, providing a promising prospect in the biosensors and clinical diagnosis fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.