Abstract

We develop a method to detect instabilities leading to nematic phases in strongly coupled metallic systems. We do so by adapting the well-known Pomeranchuk technique to a weakly coupled system of fermions in a curved asymptotically AdS bulk. The resulting unstable modes are interpreted as corresponding to instabilities on the dual strongly coupled holographic metal. We apply our technique to a relativistic 3 + 1-dimensional bulk with generic quartic fermionic couplings, and explore the phase diagram at zero temperature for finite values of the fermion mass and chemical potential, varying the couplings. We find a wide region of parameters where the system is stable, which is simply connected and localized around the origin of coupling space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.