Abstract
Tin selenide (SnSe) is considered as a potential anode for sodium-ion batteries (SIBs) owing to its high theoretical specific capacity. Unfortunately, it suffers from drastic volume expansion/contraction during sodium ions insertion/extraction, resulting in poor cycling stability. Herein, a pomegranate-inspired porous carbon shell wrapped heterogeneous SnSe/ZnSe composite (SnSe/ZnSe@C) is exquisitely designed and fabricated through electrostatic spraying followed by high-temperature selenization. The polyacrylonitrile-derived carbon shell acts as an adhesive to link the porous cubic SnSe/ZnSe and form highly interconnected microcircuits to improve the electron/ion transfer efficiency and inhibit the bulk volume change of internal metallic selenide nanoparticles and polyselenides dissolution during repeated cycling. Moreover, the abundant heterostructure interface of SnSe/ZnSe further significantly accelerates the electrons/ions transport. As a result, the as-prepared SnSe/ZnSe@C electrode exhibits a high specific capacity (508.3 mAh g−1 at 0.05 A g−1), excellent rate performance (177.8 mAh g−1 at 10.0 A g−1), and remarkable cycling stability (195.9 mAh g−1 after 10,000 cycles at 5.0 A g−1). Furthermore, in-situ X-ray diffraction (XRD)/Raman, ex-situ transmission electron microscopy, and kinetic analysis clearly reveal a four-step electrochemical reaction process and battery-capacitor dual-mode sodium storage mechanism. This work provides a new perspective for developing commercial SIBs anode materials with high capacity and long lifespan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.