Abstract

ABSTRACTIonizing radiation (IR) is a well-documented human carcinogen. The increased use of IR in medical procedures has doubled the annual radiation dose and may increase cancer risk. Genomic instability is an intermediate lesion in IR-induced cancer. We examined whether pomegranate extract (PE) suppresses genomic instability induced by x-rays. Mice were treated orally with PE and exposed to an x-ray dose of 2 Gy. PE intake suppressed x-ray-induced DNA double-strand breaks (DSBs) in peripheral blood and chromosomal damage in bone marrow. We hypothesized that PE-mediated protection against x-ray-induced damage may be due to the upregulation of DSB repair and antioxidant enzymes and/or increase in glutathione (GSH) levels. We found that expression of DSB repair genes was not altered (Nbs1 and Rad50) or was reduced (Mre11, DNA-PKcs, Ku80, Rad51, Rad52 and Brca2) in the liver of PE-treated mice. Likewise, mRNA levels of antioxidant enzymes were reduced (Gpx1, Cat, and Sod2) or were not altered (HO-1 and Sod1) as a function of PE treatment. In contrast, PE-treated mice with and without IR exposure displayed higher hepatic GSH concentrations than controls. Thus, ingestion of pomegranate polyphenols is associated with inhibition of x-ray–induced genomic instability and elevated GSH, which may reduce cancer risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call