Abstract
A POMs-based sorbent functionalized by phosphate groups: H33Na14MoV24MoVI2(PO4)11O73 has been successfully isolated under hydrothermal conditions. The cooperative assembly of the ring-shaped polyoxometalate structural building unit {P4Mo6} and MoO4 tetrahedra linkers gives rise to an unprecedented supersodalite cage containing approximately spherical cavities with a 8.76 Å diameter. As POMs-based inorganic material, compound 1 was first applied as sorbent to adsorb U(VI) from aqueous solution, exhibiting good stability, high efficiency, and selectivity. The maximum sorption capacity reaches 325.9 mg g-1, which may capture radionuclides through cooperative binding of the phosphate groups. The adsorbed U(VI) could be nearly drastically eluted when using 0.1 M Na2CO3 and the sorption capacity for U(VI) slightly decreased 10.16% through five successive sorption/desorption cycles. This work represents first application of POMs-based inorganic materials as sorbent to adsorb uranium from aqueous solution and provides a feasible approach for the entrapment and recovery of radionuclides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.