Abstract

The presence of bacterial biofilms has presented a significant challenge to human health. This study presents the development of biofilm microenvironment-responsive polymeric micelles as a novel approach to address the challenges posed by bacterial biofilms. These micelles are composed of two key components: a zwitterionic component, inspired by protein isoelectric points, containing balanced quantities of primary amines and carboxylic groups that undergo a positive charge transformation in acidic microenvironments, and a hydrophobic triclosan conjugate capable of releasing triclosan in the presence of bacterial lipases. Through the synergistic combination of pH-responsiveness and lipase-responsiveness, we have significantly improved drug penetration into biofilms and enhanced its efficacy in killing bacteria. With their remarkable drug-loading capacity and the ability to specifically target and eliminate bacteria within biofilms, these zwitterionic polymeric micelles hold great promise as an effective alternative for treating biofilm-associated infections. Their unique properties enable efficient drug delivery and heightened effectiveness against biofilm-related infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call