Abstract

This study presents the preparation of poly vinylidene fluoride (PVDF) based polymethyl methacrylate (PMMA), Poly(bis(4-Aminophenoxy)phosphazene)(PPZ) and lithium tantalate (LT) composites films using solution blending process. The fabricated PVDF/PMMA/PPZ/LT composite films were evaluated using Fourier transformed infrared spectroscopy, Scanning electron microscopy, Differential scanning calorimetry and Thermo gravimetric analyses. The changes in microstructure, dielectric, morphological and thermal properties of these films with change in composition of PVDF/PMMA/PPZ/LT have been investigated. The high PMMA content and incorporation of LT favored the PVDF phase transition from ‘α’ to ‘β’ phase as shown by FT-IR analysis. The LT particles were properly dispersed in PVDF/PMMA/PPZ matrix as confirmed by scanning electron micrograph images. The dielectric properties of the PVDF/PMMA/PPZ improved with increasing the concentration of LT. The dielectric constant of the films increased with increase in LT content in the blends. The values of dielectric properties observed were higher at lower frequency at room temperature. The composites having 10, 20, 30 & 40% LT in blend samples showed regular increase in Tons, Tmax and corresponding char yield with increase in the filler content. All the composites demonstrated two steps decomposition due to the interaction of filler with polymers at high temperature leading to oxidative decomposition of polymeric chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.