Abstract

AbstractThis work focus on the development of polymeric blends to produce multifunctional materials for 3D printing with enhanced electrical and mechanical properties. In this context, flexible and highly conductive materials comprising poly(vinylidene fluoride)/thermoplastic polyurethane (PVDF/TPU) filled with carbon black‐polypyrrole (CB‐PPy) were prepared by compression molding, filament extrusion and fused filament fabrication. In order to achieve an optimal compromise between electrical conductivity, mechanical properties and printability, blends composition was optimized and different CB‐PPy content were added. Overall, the electrical conductivities of PVDF/TPU 50/50 vol% co‐continuous blend were higher than those found for PVDF/TPU 50/50 wt% (i.e., 38/62 vol%) composites at same filler content. PVDF/TPU/CB‐PPy 3D printed samples with 6.77 vol% filler fraction presented electrical conductivity of 4.14 S m−1 and elastic modulus, elongation at break and maximum tensile stress of 0.43 GPa, 10.3% and 10.0 MPa, respectively. These results highlight that PVDF/TPU/CB‐PPy composites are promising materials for technological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.