Abstract

This paper represents a polymeric piezoelectric manufacturing process for sensing and actuation applications. The electric poling-assisted additive manufacturing (EPAM) process combining additive manufacturing (AM) with polymeric poling process has been recently introduced. This process keeps piezoelectric polymer dipoles well-aligned and uniform over a large area in a single-step direct printing process. Here, the EPAM process was employed to directly print polyvinylidene fluoride (PVDF) polymer; sensing and actuation performance was tested with dynamometer, a baseline comparison measuring instrument. Also, the plasma-assisted poling process that potentially increases piezoelectricity was briefly introduced and discussed with a preliminary result. As a result, this study promises new multi-functional materials, novel designs, and approaches in a single AM and fabrication step by combining AM with piezoelectric polymer poling methods in convenient, fast, and precise manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.