Abstract

PurposeThis study aims to investigate the material extrusion additive manufacturing (MEAM) deposition parameters for creating viable 3-D printed polyvinylidene fluoride (PVDF) structures with a balanced mix of mechanical and electrical properties.Design/methodology/approachDifferent combinations of deposition conditions are tested, and the influence of these parameters on the final dimensional accuracy, semi-crystalline phase microstructure and effective mechanical strength of MEAM homopolymer PVDF printed parts is experimentally assessed. Considering printed part integrity, appearance, print time and dimensional accuracy, MEAM parameters for PVDF are suggested.FindingsA range of viable printing parameters for MEAM fabricated PVDF Kynar 740 objects of different heights and in-plane length dimensions was determined. For PVDF structures printed under the suggested conditions, the mechanical response and the microstructure development related to Piezoelectric response are reported.Originality/valueThis research first reports on a range of parameters that have been confirmed to facilitate effective MEAM printing of 3-D PVDF objects, presents effects of the individual parameters and gives the mechanical and microstructure properties of PVDF structures fabricated under the suggested deposition conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call