Abstract
Polyvinylidene fluoride – hydroxyapatite composite filaments were processed by twin-screw extrusion at different processing angular velocities and characterized by scanning electron and atomic force microscopies, differential scanning calorimetry and tensile tests. Polymer-ceramic composites with a 0–3 connectivity were successfully obtained. Regardless of the used processing parameters, all composite filaments present very similar melting (∼152°C) and solidification (∼139°C) points and elastic moduli (∼1.0 GPa) for hydroxyapatite as dispersed phase in the composite with concentrations up to 25 wt%, indicating that they are adequate for twin-screw extrusion and 3D printing. However, the yield strength (∼29 MPa), ultimate tensile strength (∼36 MPa) and tensile point (∼29 MPa) parameters are similar only for hydroxyapatite concentrations up to 15 wt%, once higher concentrations of hydroxyapatite as dispersed phase result in fragile samples (∼50% lower for each studied property).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.