Abstract

Polymer-based composites with high dielectric constant and low loss are highly desirable due to their inherent advantages of easy processability, flexibility, and lightweight. Herein, a functional nanofillers, halloysite nanotubes (HNTs) decorated reduced graphene oxide (rGO) hybrid microstructures (HNTs@rGO) was successfully prepared via controllable electrostatic self-assembly and in-situ heat reduction method. These hybrid microstructures combine characteristics of natural 1D ceramic nanotubes with large aspect ratio and high electric conductivity of rGO micro-sheets, which provided ideal material collocation in the construction of microcapacitors. The HNTs not only effectively prevented direct contact between the rGO micro-sheets in the composites but also played an important role in forming dielectric interface within microcapacitors. Consequently, an HNTs@rGO/polyvinyl butyral (PVB) composites containing a very low content of 5 wt% rGO exhibited an ultra-high dielectric constant of 150 and an extremely low loss of 0.12 at 103 Hz. It is believed that the unique characteristics and facile fabrication process of HNTs@rGO/PVB composite make it a potentially excellent candidate for flexible polymer-based dielectric materials applied in the capacitor fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call