Abstract

Eco-friendly iron and manganese oxide nanoparticles (Fe2O3 and Mn2O3) were synthesized and integrated into graphene sheets to form uniform composites. These composites were then embedded in polyvinyl alcohol (PVA) fibers using electrospinning. Comprehensive characterization of the composites and the final composite fibers was conducted using XRD, FE-SEM, and FTIR to analyze their structural complexity and morphological differences. The antibacterial efficacy of the resulting PVA nanofibers was evaluated against Escherichia coli, which is a common pathogen in hospital environments. The results show a significant bactericidal effect against these bacteria, which highlights their potential in medical applications, such as functional bandages and wound dressings. This study paves the way for potential commercial applications of these nanofibers in healthcare settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.