Abstract

In this study, polyvinyl alcohol (PVA) microlens arrays (MLAs) were prepared, and the dynamics of contact lines and contact angles during confined PVA solution droplet evaporation were investigated by in situ optical microscopy. First, hydrophobic layers patterned with hydrophilic microholes array modified substrates were prepared by photolithography and coating methods. The flowing of PVA solution on the substrates formed droplets in each microhole self-assembly. The substrate was then heated to allow evaporation of the solvent. The results showed the contact line of confined droplets pinned at the junction between the hydrophilic and hydrophobic areas during the whole evaporation process. The apparent contact angle decreased nonlinearly during evaporation. The evaporation of PVA solution droplet in each microhole followed a constant contact radius mode, meaning constant contact area and declined contact angle during evaporation. After complete solvent evaporation, PVA formed a convex shape with convergent lens character in each microhole. In sum, the obtained PVA convex arrays with uniform sizes and good focusing properties would have potential applications in wavefront sensing, infrared focal plane detection or CCD array light accumulation, laser array scanning, laser display, optical fiber coupling, and many other optical systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call