Abstract
Highly pathogenic avian influenza A (HPAI) H5N1 viruses are circulating among poultry populations in parts of Asia, Africa, and the Middle East, and have caused human infections with a high mortality rate. H5 subtype hemagglutinin (HA) has evolved into phylogenetically distinct clades and subclades based on viruses isolated from various avian species. Since 1997, humans have been infected by HPAI H5N1 viruses from several clades. It is, therefore, important to develop strategies to produce protective antibody responses against H5N1 viruses from multiple clades or antigenic groups. In the current study, we optimized the signal peptide design of DNA vaccines expressing HA antigens from H5N1 viruses. Cross reactivity analysis using sera from immunized rabbits showed that antibody responses elicited by a polyvalent formulation, including HA antigens from different clades, was able to elicit broad protective antibody responses against multiple key representative H5N1 viruses across different clades. Data presented in this report support the development of a polyvalent DNA vaccine strategy against the threat of a potential H5N1 influenza pandemic.
Highlights
The continuous spread of highly pathogenic avian influenza Type A (HPAI) H5N1 viruses in avian species across multiple continents and frequent reports of human H5N1 infection in China and Southeast Asia highlight the threat of a potential flu pandemic in the human population
The third HA antigen design was adopted because the H5.dTM design used a tissue plasminogen activator (tPA) leader sequence and the H5.tPA insert served as a control for the H5.dTM insert to understand the role of the tPA leader when it is incorporated as the only change in the design from the original wild type HA antigen insert
While progress has been made in reducing the number of required immunizations during vaccination with inactivated H5N1 vaccines by incorporating various adjuvants into the vaccine formulations, a major next-step for H5N1 vaccine research is to determine to what degree the immunity elicited by one H5 avian influenza vaccine (currently, many candidate H5N1 vaccines were developed based on a clade 1 virus (A/VietNam/1203/2004)) can cross-protect against H5N1 viruses from other clades
Summary
The continuous spread of highly pathogenic avian influenza Type A (HPAI) H5N1 viruses in avian species across multiple continents and frequent reports of human H5N1 infection in China and Southeast Asia highlight the threat of a potential flu pandemic in the human population. Given that the majority of the world’s human population is naıve to H5N1 influenza, two immunizations are needed to achieve desired levels of protective immune responses against H5N1 in contrast to the annual seasonal flu vaccine which requires only one immunization, presumably due to the priming effects by either exposure to circulating H1, H3 or Type B influenza viruses in humans or history of prior seasonal flu vaccination. The likely requirement of two immunizations in conjunction with the genetic complexity of H5N1 viruses, as evidenced by their separation into multiple subgroups, makes it difficult to prepare for the timely production of a sufficient number of doses of H5N1 vaccines in the event of an H5N1 pandemic; supplemental strategies are needed. As shown by our previously published report [9] and confirmed by other recent studies [10], a DNA prime-inactivated vaccine boost is highly effective in eliciting higher protective immune responses than using either DNA or inactivated flu vaccine alone. DNA vaccines can be stockpiled for a long period of time, which makes this method even more attractive
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.