Abstract

AbstractSuperoleophilic and high‐strength electrospun membranes are promising materials for oil/water separation applications. Here we report the fabrication of a mechanically robust, hydrophobic polyurethane/multi‐walled carbon nanotube (PU/MWCNT) electrospun composite membrane for gravity‐driven oil/water separation. Various electrospun composite membranes with different MWCNT loadings were developed. Spinning parameters such as polymer concentration, solvent ratio, applied voltage, flow rate, and working distance were systematically optimized. The incorporation of MWCNT has increased the thermal stability, hydrophobicity, mechanical properties, and dye adsorption capacity of the PU membrane. The optimized composite fibrous membrane (PU/0.2‐MWCNT) exhibited a percentage elongation of 502%. All the PU/MWCNT composite membranes were found to be superoleophilic in nature. The optimized composite membrane showed the highest oil sorption capacity and lab‐scale oil flux of 14.21–24.07 gg−1 and 425.44 Lm−2 h−1, respectively. In the oil sorption process, all electrospun membranes were fitted to a pseudo second‐order kinetic model. Furthermore, electrospun composite membranes could adsorb toxic dye (Methylene blue) from the oil–water mixture. The PU/MWCNT composite membrane could be a potential candidate for oil/water separation applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.