Abstract

Polymer clay nanocomposites (NCs) show remarkable potential in the field of drug delivery due to their enhanced barrier properties. It is hypothesised that well dispersed clay particles within the polymer matrix create a tortuous pathway for diffusing therapeutic molecules, thereby resulting in more sustained release of the drug. As coatings for medical devices, these materials can simultaneously modulate drug release and improve the mechanical performance of an existing polymer system without introducing additional materials with new chemistries that can lead to regulatory concerns. In this study, polyurethane organosilicate nanocomposites (PUNCs) coated onto stainless steel wires were evaluated for their feasibility as blood compatible coatings and as drug delivery systems. Heparin was selected as the model drug to examine the impact of silicate loading and modifier chain length in modulating release. Findings revealed that better dispersion was achieved from samples with lower clay loadings and longer alkyl chains. The blood compatibility of PUNCs as assessed by thrombin generation assays showed that the addition of silicate particles did not significantly decrease the thrombin generation lag time (TGT, p = 0.659) or the peak thrombin (p = 0.999) of polyurethane (PU). PUNC coatings fabricated in this research were not cytotoxic as examined by the cell growth inhibition assay and were uniformly intact, but had slightly higher growth inhibition compared to PU possibly due to the presence of organic modifiers (OM). The addition of heparin into PUNCs prolonged the TGT, indicating that heparin was still active after the coating process. Cumulative heparin release profiles showed that the majority of heparin released was from loosely attached residues on the surface of coils. The addition of heparin further prolonged the TGT as compared to coatings without added heparin, but a slight decrease in heparin activity was observed in the NCs. This was thought to be from competitive interactions between clay-heparin that influenced the formation of the ternary complex between heparin, ATIII thrombin. In summary, the feasibility of using PUNC as drug delivery coatings was shown by the good uniformity in the coating, absence of by-products from the coating process, and the release of active molecules without significantly interfering with their activity.

Highlights

  • Oral or intravenous administration of aggressive anticoagulants and anti-thrombotics is a typical approach to prevent device failure in blood related applications and to improve surgical outcomes

  • The addition of silicate particles resulted in slightly lower Cell Growth Inhibition (CGI) ratios as compared to pristine PU, but within the acceptable level of inhibition and the cells maintained a high viability

  • Blood compatibility of polyurethane organosilicate nanocomposites (PUNCs) as assessed by thrombin generation assays showed that the addition of silicate particles did not significantly decrease the thrombin generation lag time or the peak thrombin of PU

Read more

Summary

Introduction

Oral or intravenous administration of aggressive anticoagulants and anti-thrombotics is a typical approach to prevent device failure in blood related applications and to improve surgical outcomes. Some of the strategies used to improve blood compatibility of polymers and reduce requirements for systemic administration of drug therapy are the surface modification of polymers through covalent or non-covalent immobilisation with either anti-thrombotic agents, introduce hydrophilic polymer chains, or incorporation and release of anti-thrombotic agents directly from the bulk material [3,4]. Extensive research has been conducted on the development and evaluation of immobilised heparin on polymer surfaces. It has been reported that heparin can be released from polymers through both ion-exchange mechanisms and via diffusion [16]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call