Abstract

Polyurethane (PU) acrylate microgels were obtained by emulsion polymerization of self-emulsified PU acrylate terminated by 2-hydroxyethyl methacrylate without any extra emulsifier and crosslinker. Moreover, the PU acrylate was also used as stabilizer and crosslinker to synthesize poly(methyl methacrylate) (PMMA)–PU composite microgels via emulsion polymerization, which provided a new method to synthesize PU microgels and their composite microgels. The kinetics of microgel synthesis was studied by gel permeation chromatography. The dynamic rheological behaviors indicated that a crosslinked structure was formed. The frequency dependency of the loss tangent and complex viscosities showed strong relationships with the microgel structure. Those microgels with rigid PMMA core showed higher ability to slide than the soft PU acrylate microgel, which had influence on the changing of loss tangent with frequency. All the microgels swollen in tetrahydrofuran exhibited high viscosities and strong shear-thinning behaviors. As a sort of flexible microgel, the PU microgel was able to form a coherent film at room temperature, which was distinct from hard microgels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call